NEXT STORY
Dome mechanism
RELATED STORIES
NEXT STORY
Dome mechanism
RELATED STORIES
Views | Duration | ||
---|---|---|---|
41. The Genome Project | 166 | 04:39 | |
42. Called to Italy | 104 | 04:16 | |
43. Tissue culture | 59 | 03:26 | |
44. Identifying genes | 25 | 02:24 | |
45. Formation of breast cancer | 35 | 03:07 | |
46. Dome mechanism | 28 | 00:35 | |
47. Measuring messenger RNA | 30 | 03:58 | |
48. Isolating 500 cells | 22 | 03:25 | |
49. Tumour development | 25 | 05:31 | |
50. Stem cells and tumours | 39 | 01:47 |
In questi studi sopra lo sviluppo dei 'domes', è emerso un fatto, che sembrava, da principio, strano, cioè che, se si esaminano... esamina l'attività di acidi grassi messi della coltura a stimolare la formazione di questi 'domes', risulta che c'è un'attività molto pronunziata di due acidi grassi, che sono acidi grassi normali, questi: sono l'acido palmitico e l'acido miristico. E questo, quando l'abbiamo scoperto, sembrava una cosa strana, appunto perché questi due acidi fossero così coinvolti. Ma poi dopo studiando quello che avviene per questo fenomeno della... proteina di questo gene, che viene trasferita dal Golgi alla superficie cellulare, abbiamo cominciato a pensare che questa è probabilmente la ragione per cui questi acidi grassi possono influenzare lo sviluppo dei 'domes', perché quando avviene questo passaggio della proteina, la proteina viene generalmente... si associa generalmente a uno di questi acidi grassi, per cui questi acidi grassi stimolano la formazione di 'domes', perché facilitano il trasferimento della proteina dal Golgi alla superficie. E infatti abbiamo poi identificato qual è queste sostanze – queste proteine, questi enzimi che trasportano gli acidi grassi – e abbiamo fatto trovato qual è quello che è coinvolto in questo trasferimento; l'abbiamo isolato e difatti adopera uno di questi acidi grassi per modificare la proteina. E questo è importante perché la superficie cellulare non è una cosa uniforme, è come un mosaico e ci sono delle zone dove le differenze sono sempre degli acidi grassi, che la superficie è fondamentalmente fatta di acidi grassi. Però questi acidi grassi supplementari modificano la superficie in maniera tale che certe proteine si accumulano lì e non nell'altro posto. Ed è questo che succede anche qui, che c'è una zona dove si accumula tutta questa la proteina del gene specifico per queste cose e appunto questo perciò è uno stadio nella formazione. Poi cosa succede dopo ancora non lo sappiamo, perché non siamo andati ancora più avanti.
In these studies into the development of domes, a fact emerged that appeared strange from the start, which is that if the activity of the fatty acids in the culture that are placed there to stimulate the formation of these domes is examined, you see that there is a very pronounced activity of two fatty acids, which are normal fatty acids: these are palmitic acid and miristic acid. When we discovered this it seemed strange because these two particular acids were involved. But then after studying what happens in this phenomenon of the protein of this gene, which is transferred by Golgi to the cell surface, we started to think that this is probably the reason why these fatty acids can influence the development of domes because when this protein passes, the protein is generally... it generally combines with one of these fatty acids, so that these fatty acids stimulate the formation of domes because they facilitate the transfer of the protein from Golgi to the surface. In fact, we then identified what these substances were – these proteins, these enzymes that transport the fatty acids – and we found what is involved in this transfer. We isolated it and in fact used one of these fatty acids to modify the protein. This is important because the cell surface is not uniform, it is like a mosaic and there are areas where the differences are always related to fatty acids, the surface is fundamentally made of fatty acids. Therefore, these additional fatty acids modify the surface in such a way that some proteins accumulate there and not in the other place. This is also what happens here, there is an area where all this accumulates... the protein of the specific gene for these things and this is thus a stage in the formation. Then what happens afterwards, we don't know, because we haven't delved much deeper into it.
The Italian biologist Renato Dulbecco (1914-2012) had early success isolating a mutant of the polio virus which was used to create a life-saving vaccine. Later in his career, he initiated the Human Genome Project and was jointly awarded the Nobel Prize in Physiology or Medicine in 1975 for furthering our understanding of cancer caused by viruses.
Title: Formation of breast cancer
Listeners: Paola De Paoli Marchetti
Paola De Paoli Marchetti is a science journalist who graduated with an honours degree in foreign languages and literature from the University Ca’Foscari, Venice. She has been a science journalist since the 1960s and has been on the staff of the newspaper Il Sole 24 Ore since 1970. She was elected president of UGIS (Italian Association of Science Journalists) in 1984. She has been a Member of the Board of EUSJA (European Union of Science Journalists’ Associations, Strasbourg), and was its president in 1987-1988 and 1998-2000. In May 2000 she was unanimously elected president emeritus. She was a member of the National Council of Italian Journalists (1992-1998). From 2002 to 2004 she was member of the working group for scientific communication of the National Committee for Biotechnology. She has also been a consultant at the Italian Ministry of Research and Technology and editor-in-chief of the publication MRST, policy of science and technology. She has co-authored many publications in the field of scientific information, including Le biotecnologie in Italia, Le piste della ricerca and Luna vent’anni dopo.
Tags: Golgi Apparatus, cells, human genes, fatty acids, cancer, breast cancer, palmitic acid, miristic acid
Duration: 3 minutes, 8 seconds
Date story recorded: May 2005
Date story went live: 24 January 2008