In 1961 Chew and Steve Frautschi put out another idea, related to this, which was that if you used the dispersion method for calculation there was a principle for the hadrons, for the strongly interacting particles alone, that would allow you to put in some sort of boundary condition, a boundary condition of going to zero at infinity, or something of that kind, that would then define a particular theory. And that particular theory would have the property that all the strongly interacting particles would be equally elementary or non-elementary. And this was the bootstrap. And the way I used to describe the bootstrap to people was that the… there was a certain list of hadrons, and these hadrons could be the particles being scattered, they could also be the particles being exchanged to give the forces, and they would also be the particles that resulted as bound states. And this self-consistency among all these different roles for the list of particles was basically the idea of the bootstrap, crudely speaking. Well that I liked very much. I didn't see why the dispersion theory method had to be distinct from field theory in order for this to be a good idea. And what I especially liked was this idea that the… all of the hadrons were equally elementary or not elementary: that seemed like a nice principle. Geoff called it nuclear democracy, I would rather call it hadronic egalitarianism, but it was the same thing. And it influenced me greatly later on in connection with the quarks two years later, because I changed it slightly to say that no observable hadron was more elementary than any other. Which is still true. Which is still true. In spite of having elementary objects. Yes. The elementary objects were not observable in the hadrons, but no observable hadron was any more elementary than any other. And I thought of that the same day that I thought of the quarks, on a visit to Columbia. And I've believed in it ever since. I think it's right.