NEXT STORY
Becoming President of EMBO
RELATED STORIES
NEXT STORY
Becoming President of EMBO
RELATED STORIES
Views | Duration | ||
---|---|---|---|
21. The birth of the relaxation methods | 344 | 06:10 | |
22. Damned fast reactions | 235 | 04:33 | |
23. The fast diffusion of proton and hydroxyl ions | 205 | 04:58 | |
24. A new successor at the University Institute of Physical Chemistry | 167 | 01:12 | |
25. Almost becoming a coordination chemist | 231 | 03:32 | |
26. Creating a periodic table of reaction rates | 178 | 02:44 | |
27. Studying cage molecules | 147 | 04:57 | |
28. Building T-jump machines | 175 | 01:16 | |
29. Becoming President of EMBO | 169 | 02:25 | |
30. Trying to set up the Max Planck Society Institute of Music | 233 | 05:13 |
Now in the '50s, as I said, many visitors came, many postdocs came, they all wanted to learn, to study fast reactions. And when they left they took either T-jump method with them or one of my secretaries... married a secretary, and so we had a very high turnover of secretaries and we built many such T-jump machines for other laboratories in our machine shop.
[Q] But there was no commercial...
There was no commercial... Leo De Maeyer tried later to do something like that. So this was the '50s. In the '50s, in 1957, unfortunately Bonhoeffer died. But at that time I was already made a scientific member of the institute and that is a tenure position corresponding to professorship at a university. In '62 I got an independent Abteilung, a division, of which we called first Chemical Kinetics, later we called it Biochemical Kinetics, and in 1964 I became Director of the Institute.
Nobel Prize winning German biophysical chemist, Manfred Eigen (1927-2019), was best known for his work on fast chemical reactions and his development of ways to accurately measure these reactions down to the nearest billionth of a second. He published over 100 papers with topics ranging from hydrogen bridges of nucleic acids to the storage of information in the central nervous system.
Title: Building T-jump machines
Listeners: Ruthild Winkler-Oswatitch
Ruthild Winkler-Oswatitsch is the eldest daughter of the Austrian physicist Klaus Osatitsch, an internationally renowned expert in gas dynamics, and his wife Hedwig Oswatitsch-Klabinus. She was born in the German university town of Göttingen where her father worked at the Kaiser Wilhelm Institute of Aerodynamics under Ludwig Prandtl. After World War II she was educated in Stockholm, Sweden, where her father was then a research scientist and lecturer at the Royal Institute of Technology.
In 1961 Ruthild Winkler-Oswatitsch enrolled in Chemistry at the Technical University of Vienna where she received her PhD in 1969 with a dissertation on "Fast complex reactions of alkali ions with biological membrane carriers". The experimental work for her thesis was carried out at the Max Planck Institute for Physical Chemistry in Göttingen under Manfred Eigen.
From 1971 to the present Ruthild Winkler-Oswatitsch has been working as a research scientist at the Max Planck Institute in Göttingen in the Department of Chemical Kinetics which is headed by Manfred Eigen. Her interest was first focused on an application of relaxation techniques to the study of fast biological reactions. Thereafter, she engaged in theoretical studies on molecular evolution and developed game models for representing the underlying chemical proceses. Together with Manfred Eigen she wrote the widely noted book, "Laws of the Game" (Alfred A. Knopf Inc. 1981 and Princeton University Press, 1993). Her more recent studies were concerned with comparative sequence analysis of nucleic acids in order to find out the age of the genetic code and the time course of the early evolution of life. For the last decade she has been successfully establishing industrial applications in the field of evolutionary biotechnology.
Tags: Temperature jump, t-jump, Max Planck Institute for Physical Chemistry, Leo de Maeyer, Karl-Friedrich Bonhoeffer
Duration: 1 minute, 17 seconds
Date story recorded: July 1997
Date story went live: 24 January 2008